Skip to content

Synthesis of Niobium Oxynitride Micro-cones

Highly ordered and uniform Niobium Oxynitride micro-cones for solar energy conversion, optics, photocatalysis, electrochromics, and sensors

Published: 28th August 2019
Synthesis of Niobium Oxynitride Micro-cones
Image is purely illustrative. Source: Dnn87,, CCBYSA3.0.


Ordinary Niobium Oxides are wide bandgap semiconductor materials, limiting their light activity to the ultraviolet region of the light spectrum, which constitutes only 3% of the solar light.

The structural architecture of Niobium Oxide nanostructures is filled with many pores and channels making it highly unstable. Also, it’s light management and charge carrier dynamics are not controlled.

Niobium Oxide nanostructures are also expensive and not easy to produce on large scale either using the physical (sputtering) or chemical method (sol gel).

Technology Overview

AUC researchers developed uniformly structured Niobium oxynitride micro-cones with enhanced optical properties and improved chemical stability. The material has a new ordered architecture of larger surface area and high stability compared to other nanostructures that are usually filled with pores and channels. 

Fig. 1Fig. 2Fig. 3Fig. 4

The wide bandgap of Niobium oxides was decreased, as a result of the hybridization between the O 2p and N 2p orbitals, to allow the absorption in the visible light, which accounts for 40% of the light spectrum. This enables their use to construct highly efficient solar energy conversion devices as well as in optoelectronic applications.

This newly developed structure is very stable and can be synthesized on large scale.


  • The material has higher absorption in the visible region (up to λ = 600 nm) that corresponds to lower band gap.
  • The material has a new architecture of larger surface area and stability compared to the other nanostructures (pores and channels).
  • Facile and cheap synthesis method compared to other physical (sputtering) or chemical (sol gel) methods.
  • The synthesis method is optimized to obtain oxynitride materials with different nitrogen to oxygen ratios.


  • Solar energy conversion
  • Optics
  • Photocatalysis
  • Electrochromics
  • Sensors
  • Biomedical applications


  • Available for exclusive and non-exclusive licensing
  • Exclusive/non-exclusive evaluation for defined period (set up for options).
  • Collaborative/supportive research
IP Status
  • Patented
  • Development partner
  • Commercial partner
  • Licensing
  • University spin out
  • Seeking investment